Studies on the Synthesis of Heterocyclic Compounds containing Benzopyrone. Part 4.' Synthesis of 4,10-Dihydro-3-hydroxy-3-methyl-1H,3H-pyrano[4,3-b][1]benzopyran-10-one, the Basic Skeleton in Fulvic Acid

Masashige Yamauchi,* Sadamu Katayama, Yoshihiko Nakashita, and Toshio Watanabe Faculty of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado, Saitama 350-02, Japan

The synthesis of 4,5-dihydro-3-hydroxy-3-methyl-1H,3H-pyrano[4,3-b][1]benzopyran-10-one (1b), the basic skeleton in fulvic acid, is described. The acetal (4), chosen as a common intermediate for syntheses of the basic skeletons in fungal metabolites such as fulvic acid and citromycetin, was cyclized into the dihydropyrone (7) with $5 \% \mathrm{HCl}$-tetrahydrofuran (1:2) regioselectively. Debenzylation followed by cyclization of the boron complex of (7) gave the tricyclic pyrone [2b], which was converted into the benzopyranone (1b) with $5 \% \mathrm{HCl}$-acetone (1:1).

During the course of our studies on the syntheses of heterocyclic compounds containing benzopyrone ${ }^{1,2}$ we initiated a program centred on the total synthesis of fungal metabolites such as fulvic acid (1a) ${ }^{3}$ and citromycetin (3a). ${ }^{4}$ In our preliminary

(1)

(2)
a: $R^{1}=\mathrm{CO}_{2} \mathrm{H}, \mathrm{R}^{2}=\mathrm{OH}$
a; $R^{1}=\mathrm{CO}_{2} \mathrm{H}, \mathrm{R}^{2}=\mathrm{OH}$
b ; $R^{1}=R^{2}=H$
b : $R^{1}=R^{2}=H$
c ; $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{2}=\mathrm{OMe}$

(3)
a; $R^{1}=\mathrm{CO}_{2} \mathrm{H}, \mathrm{R}^{2}=\mathrm{OH}$
b; $R^{1}=R^{2}=H$
studies we have investigated the syntheses of the basic skeletons in these metabolites. In a previous paper ${ }^{1}$ we described the synthesis of 2-methyl-4H,5H-pyrano[3,2-c][1]benzopyran-4one (3b), the basic skeleton in citromycetin (3a), via biogenetic type condensation of the acetal (4) to give the pyrone (6). It was thought that the cyclization was initiated by the Michael-type addition of methanol to the α, β-unsaturated ketone followed by condensation between the benzoyl group and the acetyl group to give (6) (path a). In a relatively weak nucleophilic solvent cyclization of the acetal (4) may be expected to proceed via the alternative path to yield the pyrone (7). In fact, the condensation between the ene moiety and the acetyl ketone in

(4) \downarrow aqueous HCl

(5)

(6)

(7)

Scheme 1.
the acetal (4) was realized in hydrochloric acid-tetrahydrofuran. In this paper we report the synthesis of 4,10-dihydro-3-hydroxy-3-methyl-1 $\mathrm{H}, 3 \mathrm{H}$-pyrano[4,3-b][1]benzopyran-10-one (1b), ${ }^{5}$ the basic skeleton in fulvic acid (1a).

The acetal (4), ${ }^{1}$ obtained by pyrolysis of the sulphinyl compound (8), ${ }^{1}$ was treated with $5 \% \mathrm{HCl}$-tetrahydrofuran

(8)

(9)
a: $R=\mathrm{CH}_{2} \mathrm{Ph}$ b; $R=H$

(10)

(11)
a; $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$
b; $R=H$
(1:2) at ambient temperature for 24 h to give the pyrone (7) as a single cyclization product in 97% yield. More conveniently, the pyrone (7) was obtained by treating (8) with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{AcOH}-$ THF ($1: 1: 4$) under reflux for 1 h in 97% yield. Structure (7) was confirmed by (i) a positive FeCl_{3} test, (ii) presence of the ion m / z $322\left(M^{+}\right)$, and (iii) characteristic ${ }^{1} \mathrm{H}$ n.m.r. signals for 2,3-dihydro-4H-pyran-4-one [$\delta 4.63(2-\mathrm{H})$ and $5.32(5-\mathrm{H})]{ }^{6}$ With the pyrone (7) in hand we examined the hydrogenolysis of the benzyl group. Initial hydrogenolysis of (7) with palladiumcarbon gave complex and unidentified products, probably as a result not only of cleavage of the benzyl group but also the pyrone ring. With dry hydrogen bromide in acetic acid the pyrone (7) gave the bromide (9a), the structural assignment of which was made on the basis of a characteristic dienone olefinic proton signal ($\delta 6.20)^{7}$ and the presence of the ions $m / z 386$ $\left(M^{+}+2\right)$ and $384\left(M^{+}\right)$. Further evidence was obtained from the fact that debenzylation of (9a) gave the phenol (9b), the synthesis of which has been reported previously. ${ }^{1}$ The rearrangement of the pyrone (7) into the bromide (9a) can be explained by the reaction mechanism shown in Scheme 2: (i) Protonation of the oxygen atom in the dihydropyran ring and spontaneous ring opening followed by nucleophilic bromide attack on the α-carbon; (ii) recyclization between the benzoyl carbonyl group and acetyl carbonyl group; and (iii) dehydration. Since (9b) was converted quantitatively into 2 -methyl-4H,5H-pyrano[3,2-c][1]benzopyran-4-one (3b), ${ }^{1}$ the basic skeleton in citromycetin, this route [via (9a)] is an alternative preparation of (3b). Last, treatment of (7) with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}-\mathrm{Me}_{2} \mathrm{~S}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Fujita's method) ${ }^{8}$ gave the debenzylated boron complex ($\mathbf{1 0 b}$) in ca. 15% yield instead of the phenol (11). These facts suggest that prior formation of the boron complex ($10 a$ a) would improve the yield of the debenzylation product ($\mathbf{1 0 b}$). In fact, the pyrone (7) afforded the boron complex ($\mathbf{1 0 a}$) in 70% yield on treatment with boron trifluoride-diethyl ether in dichloromethane. Although catalytic hydrogenation of (10a) with palladium-carbon gave an unidentified complex product, application of Fujita's method ${ }^{8}$ to (10a) afforded (10b) in 88% yield.

(9a)

Scheme 2.

Treatment of ($\mathbf{1 0 b}$) with concentrated $\mathrm{HCl}-$ acetic acid (1:10) resulted in the cleavage of the boron-oxygen ring and cyclization between the pyrone carbonyl group and phenol to give the pyranobenzopyran (2b) in 79% yield. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. spectra [$\delta 2.02(\mathrm{Me}), 5.32\left(\mathrm{CH}_{2}\right)$, and $5.45(=\mathrm{CH}) ; \delta_{\mathrm{C}} 20.3$ (Me), 64.9 (1-C), 94.7 (4-C), 102.7 (10a-C), 159.9 (4a-C), 167.8 (3-C), and $173.5(10-C)$] had similarities to those * of dehydrofulvic acid (2a). Although the conversion of dehydrofulvic acid (2a) into fulvic acid (1a) has been achieved by treating with $1 \mathrm{M}-\mathrm{H}_{2} \mathrm{SO}_{4},{ }^{3 \mathrm{c}}$ this method might not be applied to the pyranobenzopyran (2b) owing to its insolubility in water. Somewhat modified treatment of (2b) with $5 \% \mathrm{HCl}$-acetone ($1: 1$) at ambient temperature ${ }^{9}$ for 4 days afforded 4,10 -dihydro-3-hydroxy-3-methyl-1 $\mathrm{H}, 3 \mathrm{H}$-pyrano[4,3-b] [1] benzopyran-10one (1b), the basic skeleton in fulvic acid (1a), in 78% yield. The spectral data for (1b) $\left[v_{\text {max }} 3300,1645\right.$, and $1595 \mathrm{~cm}^{-1}$; $\lambda_{\text {max }}$ $(\log \varepsilon)(\mathrm{EtOH}) 226(4.44), 265(3.89)$, and $297 \mathrm{~nm}(3.93) ; \delta_{\mathrm{H}} 1.57$ (Me), $2.79(2 \mathrm{H}, \mathrm{ABq}, J 17.6 \mathrm{~Hz}, 4-\mathrm{H}), 4.65(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 7.32-$ $7.81(3 \mathrm{H}, \mathrm{m}, 6-, 7-, 8-\mathrm{H})$, and $8.11(1 \mathrm{H}, \mathrm{dd}, J 8.31 .5 \mathrm{~Hz}, 9-\mathrm{H}) ; \delta_{\mathrm{C}}$ $28.6(\mathrm{Me}), 38.0(4-\mathrm{C}), 56.9(1-\mathrm{C}), 115.8(10 \mathrm{a}-\mathrm{C}), 160.3(4 \mathrm{a}-\mathrm{C})$, and 175.6 (10-C)] closely resembled those reported \dagger for fulvic acid (1a) and methyl O, O-dimethylfulvate (1c). The pyranobenzopyran (1b) was also obtained by treating (2b) with (i) $\mathrm{Hg}(\mathrm{OAc})_{2}$, (ii) NaBH_{4}, and (iii) KI ${ }^{10}$ but in low yield. Recently Dean et $a l^{11}$ have succeeded in the synthesis of this ring system from chromones via three routes. Application of our method to suitably substituted acetophenone would lead to the total synthesis of fulvic acid (1a).

Experimental

M.p.s and b.p.s are uncorrected and extracts were dried over MgSO_{4}. I.r. spectra were recorded on a Hitachi Model 215 spectrophotometer. U.v. spectra were recorded with a Hitachi Model 200-10 spectrophotometer. Mass spectra were taken on a Shimazu LKB-9000 mass spectrometer and high-resolution mass spectra with a JEOL JMS-OISG instrument. ${ }^{1}$ H N.m.r.

[^0]spectra were obtained with a JEOL 100 spectrometer and ${ }^{13} \mathrm{C}$ n.m.r. spectra with a JEOL JMN-GX 270 spectrometer (tetramethylsilane as internal reference).

3-(2-Benzyloxybenzoyl)-6-methyl-2,3-dihydro-4H-pyran-4one (7).-Method A. A solution of the enedione (4) (829 mg) in $5 \% \mathrm{HCl}-$ tetrahydrofuran ($1: 2$) (90 ml) was stirred at ambient temperature for 48 h . The reaction mixture was poured into icewater (30 ml), and extracted with benzene ($3 \times 30 \mathrm{ml}$), dried, and evaporated to yield 3-(2-benzyloxybenzoyl)-6-methyl-2,3-dihydro- 4 H -pyran-4-one (7) ($707 \mathrm{mg}, 97 \%$). This pyrone was too unstable to be purified by column chromatography or distillation; $m / z 322\left(M^{+}\right) ; v_{\text {max. }}$ (neat) $1605 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right)$ $1.92(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.63(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 5.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.32$ $(1 \mathrm{H}, \mathrm{s},=\mathrm{CH})$, and $6.80-7.63(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Method B. A mixture of the 1,3-dione (8) (1.28 g), $5 \% \mathrm{H}_{\mathbf{2}} \mathrm{SO}_{4}$ $(12.5 \mathrm{ml}), \mathrm{AcOH}(12.5 \mathrm{ml})$, and tetrahydrofuran $(50 \mathrm{ml})$ was refluxed for 1 h under an argon atmosphere. After being cooled the reaction mixture was poured into ice-water (100 ml) and extracted with ether $(2 \times 50 \mathrm{ml})$. The organic layer was washed with water ($5 \times 30 \mathrm{ml}$), dried, and evaporated to afford the pyrone (7) $(0.93 \mathrm{~g}, 97 \%)$.

2-(2-Benzyloxyphenyl)-3-bromomethyl-6-methyl-4H-pyran-4one (9a).-To a solution of the pyrone (7) $(540 \mathrm{mg})$ in AcOH (5 $\mathrm{ml})$ was added $4 \%(\mathrm{w} / \mathrm{w}) \mathrm{HBr}$ in AcOH at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at ambient temperature for 24 h , then poured into ice-water (10 ml) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ $(1: 4)(3 \times 25 \mathrm{ml})$. The organic layer was washed with water ($3 \times 10 \mathrm{ml}$), dried, and evaporated. The resulting residue was subjected to column chromatography (Kieselgel 60, 70-230 mesh, Merck, $5 \% \mathrm{AcOEt}$ in benzene as eluant) to give 2-(2-benzyloxyphenyl)-3-bromomethyl-6-methyl-4 H -pyran-4-one
(9a) ($231 \mathrm{mg}, 36 \%$); m/z $386\left(M^{+}+2\right.$) and $384\left(M^{+}\right) ; v_{\text {max. }}$ $\left(\mathrm{CHCl}_{3}\right) 1660,1612$, and $1602 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 2.23(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 4.14\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}\right), 5.12\left(2 \mathrm{H}, \mathrm{s} \mathrm{OCH}_{2} \mathrm{Ph}\right), 6.20(1 \mathrm{H}, \mathrm{s}$, $=\mathrm{CH}$), and $6.92-7.63(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

3-Bromomethyl-2-(2-hydroxyphenyl)-6-methyl-4H-pyran-4one (9 b).-A solution of the pyranone (9 a) $(26 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $35 \%(\mathrm{w} / \mathrm{w}) \mathrm{HBr}-\mathrm{AcOH}(3 \mathrm{ml})$ was stirred for 24 h at ambient temperature. The reaction mixture was poured into ice-water (5 ml) and extracted with a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ (2:5) $(3 \times 20 \mathrm{ml})$. The organic layer was washed with water $(5 \times 10$ $\mathrm{ml})$, dried, and evaporated. Recrystallization of the residue from benzene gave 3-bromomethyl-2-(2-hydroxyphenyl)-6-methyl$4 H$-pyran-4-one (9b), which was identical with the sample ${ }^{1}$ reported previously.
BF_{2} Complex of 3-(2-Benzyloxybenzoyl)-2,3-dihydro-6-methyl-4H-pyran-4-one (10a).-A solution of the pyranone (7) $(999 \mathrm{mg})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added to a solution of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1 \mathrm{ml})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(33 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ under an argon atmosphere. The stirring was continued at ambient temperature for 4.5 h after which the reaction mixture was poured into icewater (100 ml) and extracted with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{AcOEt}(5: 1)(3 \times 40$ $\mathrm{ml})$. The organic layer was washed with water $(3 \times 100 \mathrm{ml})$, dried, and evaporated. The resulting residue was subjected to column chromatography (Florisil, Wako, benzene as eluant) to give the BF_{2} complex of the pyrone (10 a) $(615 \mathrm{mg}, 70 \%)$; m.p. $114-115^{\circ} \mathrm{C}$ (from benzene) (Found $\mathrm{C}, 65.1 ; \mathrm{H}, 4.6$. $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BF}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 64.89 ; \mathrm{H}, 4.64 \%$); $v_{\text {max. }}(\mathrm{KBr}) 1597 \mathrm{sh}$, and $1593 \mathrm{~cm}^{-1} ; \lambda_{\text {max. }}$. (EtOH) 263 (log $\varepsilon 4.00$) and $369 \mathrm{~nm}(4.03)$; $\delta\left(\mathrm{CDCl}_{3}\right) 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.87\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}, 5.09(2 \mathrm{H}, \mathrm{s}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 5.62(1 \mathrm{H}, \mathrm{s},=\mathrm{CH})$, and $7.01-7.60(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}$ $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 21.5,67.9,70.1,99.1,99.8,113.7,121.4,121.7,127.8$, 128.7, 130.0, 133.8, 136.6, 155.8, 171.7, 178.7, and 184.8 p.p.m.
BF_{2} Complex of 3-(2-hydroxybenzoyl)-2,3-dihydro-6-methyl4 H -pyran-4-one ($\mathbf{1 0 b}$).-A solution of the benzyloxy compound (10 aa) $(160 \mathrm{mg}, 0.43 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added dropwise to a solution of $\mathrm{Me}_{2} \mathrm{~S}(1.5 \mathrm{ml}), \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.5 \mathrm{ml})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ at $-20^{\circ} \mathrm{C}$ under an argon atmosphere. The reaction mixture was stirred for 24 h at ambient temperature and then poured into cooled aqueous $\mathrm{NaCl}(20 \mathrm{ml})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{ml})$. The ether layer was washed with aqueous NaCl solution ($5 \times 5 \mathrm{ml}$), dried, and evaporated to afford the BF_{2} complex of 3-(2-hydroxybenzoyl)-6-methyl-2,3-dihydro-4H-pyran-4-one (10 b) ($106 \mathrm{mg}, 88 \%$), m.p. $137-$ $139.5^{\circ} \mathrm{C}$ (from benzene-ethanol) (Found: $\mathrm{C}, 55.6 ; \mathrm{H}, 3.8$. $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BF}_{2} \mathrm{O}_{4}$ requires C, $55.75 ; \mathrm{H}, 3.97 \% v_{\text {max. }}$ (KBr) 3500 , 1610,1600 , and $1560 \mathrm{~cm}^{-1} ; \lambda_{\text {max. }}$ (EtOH) $262(\log \varepsilon 3.66)$ and $378 \mathrm{~nm}(4.07) ; \delta\left(\mathrm{CDCl}_{3}\right) 2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 5.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $5.74(1 \mathrm{H}, \mathrm{s},=\mathrm{CH})$, and $6.90-7.53(4 \mathrm{H}, \mathrm{m}, \operatorname{ArH}) ; \delta_{\mathrm{c}}$ $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 21.6,68.1,99.8,99.9,116.8,120.0,129.9,133.8$, 155.8, 172.3, 178.5, and 184.4 p.p.m.

3-Methyl-1H,10H-pyrano[4,3-b][1]benzopyran-10-one

(2b).-A mixture of the BF_{2} complex ($\mathbf{1 0 b}$) $(106 \mathrm{mg}, 0.38 \mathrm{mmol})$, $\mathrm{AcOH}(3 \mathrm{ml})$, and concentrated $\mathrm{HCl}(0.3 \mathrm{ml})$ was stirred for 3 h at ambient temperature. The reaction mixture was poured into ice-water (30 ml), and extracted with benzene ($3 \times 10 \mathrm{ml}$). The benzene layer was washed with water ($5 \times 5 \mathrm{ml}$), dried, and evaporated. The resulting residue was subjected to preparative centrifugal t.l.c. (Kieselgel $60 \mathrm{PF}_{254}$, Merck, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluant) to give 3-methyl-1 $\mathrm{H}, 10 \mathrm{H}$-pyrano[4,3-b][1]benzopyran-10-one (2b) $(64 \mathrm{mg}, 79 \%)$, m.p. $59.5-61.5^{\circ} \mathrm{C}$ (from n-hexane-benzene) (Found: C, 72.8; H, 4.8. $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3}$ requires C, $72.88 ; \mathrm{H}, 4.71 \%$); $m / z 214 \mathrm{M}^{+} ; \mathrm{v}_{\text {max }}(\mathrm{KBr}) 1656,1594$, and $1554 \mathrm{~cm}^{-1} ; \lambda_{\text {max. }}$ (EtOH) $250(\log \varepsilon 4.22), 302$ (4.03), and $346 \mathrm{~nm}(4.13) ; \delta$ $\left(\mathrm{CDCl}_{3}\right) 2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 5.32\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.45(1 \mathrm{H}, \mathrm{s},=\mathrm{CH})$, and $7.27-7.67(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 20.3,64.9,94.7$, 102.7, 117.7, 124.7, 125.5, 132.7, 155.4, 159.9, 167.8, and 173.5 p.p.m.

4,10-Dihydro-3-hydroxy-3-methyl-1H,3H-pyrano[4,3-b][1]-benzopyran-10-one (1b).-Method A. A mixture of the benzopyranone ($\mathbf{2 b}$) ($76 \mathrm{mg}, 0.35 \mathrm{mmol}$) and 5% aqueous $\mathrm{HCl}(5$ ml) in acetone was stirred for 4 days at ambient temperature. The reaction mixture was poured into ice-water $(10 \mathrm{ml})$ and extracted with AcOEt ($3 \times 10 \mathrm{ml}$). The ethyl acetate layer was washed with water ($3 \times 5 \mathrm{ml}$), dried, and evaporated. The resulting residue was subjected to preparative centrifugal t.l.c. (Kieselgel $60 \mathrm{PF}_{254}$, Merck, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{AcOEt}$ (7:3) as eluant) to give unchanged ($\mathbf{2 b}$) (11 mg). Further elution gave 4,10 -dihydro-3-hydroxy-3-methyl-1 H,3H-pyrano[4,3-b][1]benzopyran-10one (1b) [$55 \mathrm{mg}, 69 \%$; 78% from reacted (2 b)], m.p. $182-$ $183.5^{\circ} \mathrm{C}$ (from dioxane) (Found: $\mathrm{C}, 66.5 ; \mathrm{H}, 5.0 . \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $\mathrm{C}, 67.22 ; \mathrm{H}, 5.22 \%$); $m / z 232.0726\left(M^{+}\right)\left(\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4}\right.$ requires $M^{+}, 232.0735$); $v_{\text {max. }}(\mathrm{KBr}) 3300,1645$, and 1595 $\mathrm{cm}^{-1} ; \lambda_{\text {max. }}(\mathrm{EtOH}) 265 \log \varepsilon(3.82), 296$ (3.86), and 302 nm (3.86); $\delta\left[\mathrm{CDCl}_{3}-\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 3: 1\right] 1.57(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.79(2 \mathrm{H}$, $\left.\mathrm{ABq}, J 17.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.65\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 7.32-7.81(3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$, and $8.11(1 \mathrm{H}, \mathrm{dd}, J 8.3,1.5 \mathrm{~Hz}, 9-\mathrm{H}) ; \delta_{\mathrm{c}}\left[\mathrm{CDCl}_{3}-\right.$ $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 3: 1\right) 28.6,38.0,56.9,94.7,115.8,118.1,125.0,125.5$, 133.6, 156.5, 160.3 , and 175.6 p.p.m.

Method B. A mixture of the benzopyranone ($\mathbf{2 b}$) ($\mathbf{3 5} \mathrm{mg}, 0.16$ $\mathrm{mmol}), \mathrm{Hg}(\mathrm{OAc})_{2}(58 \mathrm{mg}, 0.18 \mathrm{mmol})$, water $(2 \mathrm{ml})$, and tetrahydrofuran (8 ml) was stirred at $0^{\circ} \mathrm{C}$ for 30 min . A solution of $\mathrm{NaBH}_{4}(9 \mathrm{mg})$ in water $(1 \mathrm{ml})$ and a solution of $\mathrm{KI}(150 \mathrm{mg})$ in water (1 ml) at $-10^{\circ} \mathrm{C}$ were then added to the reaction mixture which was then poured into saturated aqueous NaCl (5 ml) and extracted with benzene. The benzene layer was washed with aqueous $\mathrm{NaCl}(3 \times 5 \mathrm{ml})$, dried, and evaporated. The residue was subjected to preparative centrifugal t.l.c. (Kieselgel $60 \mathrm{PF}_{254}$, Merck, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-AcOEt 7:3 as eluant) to give 4,10-
J. CHEM. SOC. PERKIN TRANS. I 1985
dihydro-3-hydroxy-3-methyl-1 $\mathrm{H}, 3 \mathrm{H}$-pyrano[4,3-b][1]-benzo-pyran-10-one (1b) ($14 \mathrm{mg}, 37 \%$).

References

1 Part 3, M. Yamauchi, S. Katayama, Y. Nakashita, and T. Watanabe, J. Chem. Soc., Perkin Trans. 1, 1984, 503.

2 T. Watanabe, Y. Nakashita, S. Katayama, and M. Yamauchi, J. Chem. Soc., Chem. Commun., 1977, 493; T. Watanabe, S. Katayama, Y. Nakashita, and M. Yamauchi, Chem. Pharm. Bull., 1977, 25, 2778; T. Watanabe, S. Katayama, Y. Nakashita, and M. Yamauchi, J. Chem. Soc., Perkin Trans. 1, 1978, 726.
3 (a) For isolation see A. E. Oxford, H. Raistrick, and P. Simonart, Bioche. J., 1935 29, 1102; (b) for structure determination see F. M. Dean, R. A. Eade, R. A. Moubasher, and A. Robertson, Nature 1957, 179, 366; (c) J. Chem. Soc., 1957, 3497.
4 For isolation see A. C. Hetherington and H. Raistrick, Philos. Trans. R. Soc. London, Ser. B, 1931, 220, 209 (Chem Abstr., 1932, 26, 2485);
for structure determination see J. B. D. Mackenzie, A. Robertson, and W. B. Whalley, J. Chem. Soc., 1950, 2965.
5 Preliminary communication, M. Yamauchi, S. Katayama, Y. Nakashita, and T. Watanabe, J. Chem. Soc., Chem. Commun., 1983, 335.

6 P. Yates and D. J. MacGregor, Can. J. Chem., 1973, 51, 1267.
7 K. Sato, S. Inoue, and M. Ohashi, Bull. Chem. Soc. Jpn., 1973, 46, 1288; P. J. Wittek, K. B. Hindley, and T. M. Harris, J. Org. Chem., 1973, 38, 896.
8 K. Fuji, T. Kawabata, and E. Fujita, Chem. Pharm. Bull., 1980, 28, 3662.

9 J. Ficini, P. Kahn, S. Falou, and M. Touzin, Tetrahedron Lett., 1979, 67.

10 E. J. Corey and G. Goto, Tetrahedron Lett., 1980, 21, 3463.
11 F. M. Dean, M. Al-Sattar, and D. A. Smith, J. Chem. Soc., Chem. Comтй., 1983, 535.

[^0]: * (a) For the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of (2a) see F. M. Dean and D. R. Randell, J. Chem. Soc., 1961, 798; (b) for ${ }^{13} \mathrm{C}$ n.m.r. spectrum see I. Kurobane, C. R. Hutchinson, and L. C. Vining, Tetrahedron Lett., 1981, 22, 493.
 \dagger For the i.r. and u.v. spectra of (1a) see ref. $3 c$; for the ${ }^{13} \mathrm{C}$ n.m.r. spectrum of (1a) see footnote ${ }^{*}(b)$; for the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of (1a) see T. Sakai, A. Ichihara, and S. Sakamura, Agric. Biol. Chem., 1981, 45, 1275.

